智能影像诊断深入现实还有多远?

更新时间:2017-08-02 17:04:02点击:802125 行业观点

动辄可以听到“AI取代医生”“AI的准确率超过医生”的言论,同时“理想很美好,现实很骨感”的感慨频频传来,理想的豪言壮语随处可见,那现实是什么呢?

有人说,21世纪是数据为王的时代;有人将算法比作发动机,数据比作石油;有人则强调行业数据、专家资源和核心技术是打造智能影像缺一不可的三要素。无论怎样强调数据的重要性都不为过,我们且以影像数据为径,智能影像公司的运营为纬,一窥智能影像公司的真实日常。

管家婆一码中一肖

数据端:保证质量,数量多多益善
尽管我国存在第三方影像中心,但绝大多数的医疗影像数据来源于医院。据悉,大的三甲医院一年产生的影像数据在10T以上。宜远智能CEO吴博称,“单个医院的影像数据存量就很大,每天数百例新增也很常见。”
在医疗信息系统中,PACS系统负责医疗影像采集、数据传输存储以及影像分析、处理,并且不同的PACS系统之间,能以以DICOM国际标准方式对接。
总体来说,医院影像数据多且大都标准化,便于机器阅读,为此,智能医疗影像被业内人认为将率先实现商业化落地。
上海市儿童医院影像科主任杨秀军曾表示,“很多医学影像领域特别适合人工智能/图像识别技术,国内外有很多厂商从事这方面,也做出一些成果。”
对于一个AI系统而言,数据多多益善是有前置条件的,在保证喂养数据质量的情况下,增加数量才有意义。而判断影像数据质量,主要取决于AI公司所打造智能诊断产品的临床目的。除此之外,对于智能影像诊断而言,影像数据需要关联更准确的诊断和后期结果关联,否则垃圾进,垃圾出。
南方医科大学副教授刘再毅曾表示,“我们数据多得不得了,我们影像科每天产生很多数据,但是有多少数据可以用?1%都不到,其中有大量错误信息。”他补充道,“数据规范的问题没有办法管控,临床信息经常有误。”
数据获取:“合作”共赢
影像数据是医院的,智能影像公司如何获取呢?
医疗数据是一种资源,意味着它有价值,想获取有价值的东西最简单的逻辑就是“买买买”,这正是财大气粗的IBM的战略。在2014年相继收购了大数据医疗保健分析提供商Phytel与Explorys后,2015年,以10亿美元收购了医学成像及临床系统供应商Merge Healthcare,后者坐拥有8500家客户,其中包括美国联邦政府和州政府机构、雇主、医保、医院等,以及3亿病人数据。
在我国,三甲医院拥有绝大多数影像数据,但影像数据不出院是必须守住的红线。为此,AI公司与医院寻求“合作”就成了一种可能的路径。一般来说,AI公司会选择与医院合作开发,一方面得到脱敏的数据和行业专家,一方面收获了产品打磨的场景,至于合作模式,则各有特色。
数据处理:“只有人工,没有智能”
一如机器学习AI建模的流水线,医疗影像数据处理过程也要经历数据标注、清洗、切割,随后是建模、调参等。
在处理影像数据的技术问题上,据吴博介绍,医疗影像数据刻画的是体内脏器,与肉眼容易识别花鸟虫鱼人脸等常规图片,成像原理与视觉特征都不相同,深度学习模型尤其需要深度改造。

但医疗影像数据处理的特殊之处在于数据标注耗费时间更长、门槛更高,在医生的诊断中,影像仅是一个参考信息,最终还要参考病理诊断等信息进行确诊,所以对于打造一个智能诊断系统来说,很多数据的集合才是有效的数据。AI公司需要尽可能多地打通不同的系统,把病人的所有相关信息整合在一起,这其实是比较难的。(来源:雷锋网)


关键词:医疗云 影像云 医疗影像云 医疗影像云平台